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Abstract
To interpret the data on positron annihilation in solids in terms of the electron momentum
density, both the electron–positron interaction and the positron distribution have to be
considered explicitly. In this work we discuss the influence of the shape of the positron
wavefunction and electron–positron (e–p) correlations on the calculated e–p momentum density
and lifetime of the positron in perfect SiC. It is shown that the form of the positron distribution
in the Wigner–Seitz cell has a considerable effect on the calculated annihilation characteristics.
The results obtained within the independent particle model are compared with their counterparts
incorporating e–p correlation functions locally and beyond the local density approximation.
The calculations have been performed for SiC of 3C cubic (zinc-blende) structure within the
linear muffin-tin orbital atomic sphere approximation method.

1. Introduction

Positron annihilation spectroscopy is a sensitive and effective
technique to probe the electronic structure of solids [1]. In
particular, the angular correlation of annihilation radiation
(ACAR) and coincidence Doppler broadening experimental
data contain useful information on the electron momentum
density (EMD) in the material under study.

The increasing interest in the electronic properties of
silicon carbide [2, 3] is mainly due to the vital importance of
this semiconductor for industry and device technology. The
positron annihilation characteristics for perfect and defected
SiC have been extensively studied both theoretically and
experimentally [4–8]. However, due to strong Coulomb
attraction between the positron and surrounding electron cloud,
the information on the electron density in SiC, extracted from
the ACAR [4, 5] and Doppler broadening spectra [4] as well
as from the positron lifetime [6, 7], is distorted by the effect
of both the positron distribution and enhancement of electron
density at the positron site. While the resulting change of
the electron density at the positron position has been widely
studied (see [1, 9–13] and references cited therein), much

less attention has been given to the influence of the positron
distribution on the calculated annihilation characteristics in
solids [9, 10].

In the present paper the effect of the positron wavefunction
on the calculated e–p momentum density is studied for the
perfect SiC of the 3C zinc-blende structure. Moreover,
the influence of the e–p interaction on the positron charge
distribution is discussed. The annihilation characteristics
obtained within the local and non-local approaches to the e–
p correlation are compared with their independent particle
model (IPM) and EMD counterparts. The valence and core
contributions to the resulting spectra are analysed thoroughly.

2. Calculation and results

The experimental ACAR and Doppler broadening spectra are
usually interpreted as, respectively, two- and one-dimensional
projections of the e–p momentum density. This density is given
by the formula:

ρ(p = k + G)

=
∑

t

∣∣∣∣
∫

�

exp(−ip · r)ψt (r)ψ+(r)
√
γ (t, r) dr

∣∣∣∣
2

. (1)
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Here p and k are the momenta in the extended and reduced
zone scheme, respectively, G is the reciprocal lattice vector
and � is the volume of the sample. ψ+ and ψt stand for
the positron and electron wavefunctions, respectively, and γ
denotes the e–p correlation function that, in general, depends
on both the initial electron state t and the positron position r.
The summation in equation (1) runs over all occupied electron
states t , which for valence electrons are the Bloch states k j
(associated with the wavevector k and band index j ), and for
core sates are indexed by quantum numbers nl j .

Within the IPM the e–p correlation effect is neglected,
i.e. one assumes that γ (t, r) = 1, and formula (1) takes the
form:

ρIPM(p = k + G) =
∑

t

∣∣∣∣
∫

�

exp(−ip · r)ψt (r)ψ+(r) dr

∣∣∣∣
2

.

(2)
If the positron is uniformly distributed in the unit cell, i.e. if
one assumes that |ψ+(r)|2 = 1/�, then the IPM formula (2)
reduces to the expression which defines the EMD:

ρEMD(p = k + G) =
∑

t

∣∣∣∣1/
√
�

∫

�

exp(−ip · r)ψt (r) dr

∣∣∣∣
2

.

(3)
The electron and positron wavefunctions in formulae (1)–

(3) are the solutions of the set of Schrödinger equations,

[−∇2 + Vext(r)+ VH(r)+ Vxc(r)]ψt (r) = Etψt (r) (4a)

[−∇2 − Vext(r)− VH(r)+ Vcorr(r)]ψ+(r) = E+ψ+(r). (4b)

The electron Coulomb potential, VC, consists of the
Hartree potential and the external potential, due to ions, VH,
and Vext. The relevant positron Coulomb potential is equal to
its electron counterpart with the opposite sign. Vcorr and Vxc

denote the e–p interaction [1, 11] and e–e exchange–correlation
potentials, respectively. The electron charge density,

nel(r) =
∑

t

|ψt(r)|2,

and the Hartree potential are related as

VH(r) =
∫

�

nel(r′)/|r − r′| dr′.

The potential Vcorr describes the positron interaction with
the electron screening cloud and can be determined from the
Feynman theorem [1, 10, 11], basing on the screening charge
distribution. Although several approximations, local or non-
local, exist for the e–p interaction, in most theoretical studies
of the positron annihilation characteristics the correlation
potential Vcorr has been set equal to zero. The latter approach is
due to the IPM [1]. Local density approximation (LDA) [9, 11]
to the density functional theory approximates this e–p potential
by a local quantity corresponding to the homogeneous electron
gas, and therefore is not expected to work well for strongly
varying electron densities. For the latter, the non-local effects
will be important and they can be described, for example,
within the generalized gradient approximation (GGA) [12] or
the weighted density approximation (WDA) [10, 14].

In the present work the valence electron and positron
wavefunctions have been calculated for SiC of 3C cubic
(zinc-blende) structure using the self-consistent linear muffin-
tin orbital (LMTO) band structure scheme with the atomic
sphere approximation (ASA) [15, 16]. For the core electrons
the relativistic effects are included. The experimental lattice
constant, a = 8.22 au [2], has been used. The 3C cubic zinc-
blende structure of SiC has been modelled within the ASA as
the fcc lattice containing four spheres in the unit cell. Two of
the spheres are centred at q1 = (0, 0, 0) on the Si site and at
q2 = (a/4, a/4, a/4) on the C site. To improve the packing
of the open zinc-blende structure, the two empty spheres have
been included. These spheres, positioned at q3 = (a/2, 0, 0)
and q4 = (3a/4, a/4, a/4), represent the interstitial region.
The relevant value of the average sphere radius, S, equals to
2.024 au. In the present calculation the radii of individual
atomic spheres have been set equal to the common average
value, S. To improve on the ASA, for valence part of ρ(p)
the Jarlborg–Singh correction [17] has been implemented in
the equations (1)–(3).

The electron–electron exchange–correlation potential has
been incorporated in (4a) within the LDA in the Ceperley–
Alder form [18]. The GGA [19] was also employed for
comparison. The positron wavefunction has been associated
with the bottom of positron energy band (k+ = 0, j+ = 1).
Various approximations to Vcorr have been applied in the
positron Schrödinger equation. The e–p momentum density
has been calculated for the IPM and including the e–p
interaction effects within the LDA and WDA.

2.1. The electronic structure

The electron Coulomb potential in the sphere of type q takes
the form

V q
C (r)=V q

H (r)+V q
ext(r)=

∫

�q

nq
el(r

′)/|r−r′| dr′−Z q/r+V q
mad,

where Z q and nq
el denote the nucleus charge and electron

density distribution in the sphere. SV q
H (S) is equal to the

electron charge inside the sphere of volume �q and V q
mad is

the respective Madelung potential. For the sphere positioned
at q, V q

mad is defined as [15, 16]

V q
mad = −1/S

∑

R,q′
�Z q ′

/|R − q + q′|,

where R are the lattice vectors and �Z q = Z q − SV q
H (S) is

the charge (ionicity) of the sphere q .
The calculated valence electron band structure along three

main crystallographic directions is shown in figure 1. Solid
and broken lines correspond, respectively, to the LDA [18] and
GGA [19] electron–electron exchange–correlation potential,
Vxc, employed in (4a). Eight valence electrons fully occupy
four lower bands. Due to the charge neutrality of the unit cell
in SiC, the sum of Coulomb potentials at the sphere boundaries
is equal to zero, ∑

q

V q
C (S) = 0,

and well defines the zero energy level.
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Figure 1. Energy bands in SiC along three main crystallographic
directions. Solid and broken lines correspond to the LDA [18] and
GGA [19] to Vxc, respectively.

Table 1. The positron and valence electrons charge contained inside
the individual atomic spheres, calculated within various approaches
to the e–p and e–e interaction potentials.

Positron charge
Valence
electrons charge

Sphere IPM LDA WDA 1/� LDA GGA

Si site 0.104 0.112 0.118 0.25 1.985 1.964
C site 0.148 0.164 0.179 0.25 4.328 4.348
Empty sphere 1 0.418 0.405 0.395 0.25 0.877 0.875
Empty sphere 2 0.330 0.319 0.308 0.25 0.812 0.813

As can be seen in figure 1, the results for the LDA and
GGA energy band structures hardly differ. The calculated
electron chemical potentials,μ−, that contribute to the positron
affinity [6, 20], are equal to 0.117 and 0.134 Ryd for the LDA
and GGA, respectively. The relevant values of energy gap,
Egap, equal to 2.16 and 2.14 eV, are slightly lower than the
reported experimental data, 2.36 eV [2].

The radial distribution of the electron charge inside the
individual spheres, 4πr 2nq

el(r), obtained within the LDA, is
plotted in figure 2. The valence electron charge is polarized
in the Wigner–Seitz cell [3]. In contrast to the unit cell, the
separate atomic spheres are not neutral any more. The electron
charge transfers from the Si site towards the C site and the two
empty spheres. The ionicity �Z q of the sphere positioned at
the Si atom (Z = 14), calculated within the LDA and GGA
amounts to 2.017 and 2.036, respectively. The relevant LDA
and GGA values for the sphere at the C site (Z = 6) are equal
to −0.328 and −0.348. For the two empty spheres (Z = 0),
centred at q3 and q4, the corresponding charges are equal to
−0.877 and −0.812 for the LDA and to −0.875 and −0.813
for the GGA. The charge of valence electrons in particular
spheres is listed in table 1. The major part of valence charge
(about 55%) is contained inside the sphere positioned at the C
atom and at the Si site (about 25%). The remaining valence
charge (about 20%) is distributed almost equally between the
two empty spheres.

The lack of charge neutrality for individual spheres gives
rise to non-zero values of the Coulomb potential at the spheres
boundary, V q

C (S) (the slope of −r 2V q
C (r) is presented in
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Figure 2. Electron charge density inside individual atomic spheres
calculated as a function of the distance from the centre for the
spheres containing atoms of Si and C and for the empty spheres.
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Figure 3. The positron potential, r 2V+(r), inside the individual
spheres as a function of the distance r from the sphere centre,
calculated within the IPM, LDA and WDA to Vcorr. Circles mark the
IPM for the empty sphere centred at q4.

figure 3 by solid lines). In consequence, the corresponding
electron densities, nq

el(S), differ for various spheres, as can be
well seen in figure 2.

2.2. The positron distribution

The effective potential, acting on the positron (see (4b)),
is presented in figure 3 for individual spheres. The IPM
result corresponds to neglecting the e–p interaction, i.e. to

3
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Vcorr(r) = 0, and is equal to the electron Coulomb potential
with the opposite sign. This quantity is plotted for the spheres
positioned at q1 (Si site), q2 (C site) and q3 (empty sphere) by
solid lines. Solid circles describe second empty sphere, centred
at q4.

The e–p correlation effects have been incorporated in (4b)
both locally and beyond the LDA. The LDA results, as
parameterized by Boronski and Nieminen [11], are presented
by dashed lines for the spheres centred at q1, q2 and q3.
The non-locality of Vcorr has been implemented within the
WDA [10] (the dotted lines in figure 3). The energy dependent
correlation functions have been used in the calculation of
V WDA

corr from the Feynman theorem. The semiconductor
character of SiC is taken into account by including the non-zero
value of the energy gap to the state-selective WDA formalism.
For the sake of fitting to the graph scale, the plots of LDA and
WDA potentials refer to V LDA+ (r) + 0.5 Ryd and V WDA+ (r) +
0.5 Ryd, i.e. to the positron potential shifted by a constant value
of 0.5 Ryd (equal to the positron binding energy).

The first thing to note when comparing the curves in
figure 3, is that the IPM result differs appreciably from its LDA
and WDA counterparts, as the ‘bare’ positron is more repulsive
to ionic cores than the particle ‘dressed’ in its screening cloud.
Inside the Si and C spheres, the LDA values are intermediate
between the IPM and WDA. This feature may be attributed to
the fact, that the electron screening cloud, evaluated within the
WDA, is shifted from the positron position towards the region,
where the electrons are found with highest probability [10].
In the empty sphere the WDA screening charge is partially
detached from a positron and redistributed towards the ‘full’
spheres. In consequence, the WDA potential is more IPM-like
than its LDA counterpart. Close to the boundary of the sphere
positioned at the Si site and in the empty sphere, the LDA and
WDA potentials are more similar, as in this region the electron
density varies rather slowly (as can be seen in figure 2). This is
not the case for the positron position close to the nuclei, where
the electron density is varying stronger and the non-locality of
the e–p correlations starts to play an important role.

The positron energy eigenvalues, E+, obtained from (4b)
within the IPM, LDA and WDA, amount to 0.115, −0.513
and −0.519 Ryd, respectively. The common zero energy level
has been set for the positron and electrons. The positron
affinity, A+, has been introduced for a bulk material as the
sum of electron and positron chemical potentials [6, 20]. For
the LDA [18] electron model in (4a), the relevant values of
A+ are equal to 0.32, −5.39 and −5.96 eV for the IPM,
LDA and WDA positron potentials in (4b), respectively. The
application of the GGA [19] to the e–e exchange–correlation
potential in (4a) changes relevant values only slightly, to −5.15
and −5.24 eV for the LDA and WDA positron potentials.
In both cases the theoretical results differ from the value of
−3.89 eV [6], extracted from the experimental data as the sum
of measured electron and positron work functions. On the other
hand, the values of A+, calculated in the present work, are in a
very good agreement with the theoretical results of [6].

The positron density distribution in the individual spheres,
|ψ+(r)|2, calculated within various approaches to Vcorr in (4b),
is presented in figure 4 as a function of the distance r from
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Figure 4. The positron density distribution calculated within various
approximations, as a function of distance from the centre of the
spheres containing Si and C atoms (two upper panels) and of the two
empty spheres (bottom panel). IPM, LDA and WDA refer to the
approach used for Vcorr in (4b). The uniform distribution,
|ψ+(r)|2 = 1/�, is quoted by the dash-dotted lines.

the sphere centre. Once again, the curves marked by the
solid circles refer to the second empty sphere, located at
q4. The dash-dotted line corresponds to the uniform positron
distribution. The relevant positron charge, contained in the
separate spheres, is listed in table 1 for the IPM, LDA and
WDA approximation to Vcorr.

As can be seen in figure 4 and table 1, the positron
distribution has the highest weight (over 70%) just in the
interstitial region, represented by the empty spheres. There is
a strong influence of the e–p interaction on the shape of the
positron wavefunction, through the e–p correlation potential.
Comparing the results obtained within the IPM, LDA and
WDA, one can note that the inclusion of the e–p correlation
potential in (4b) shifts the positron weight from the empty
spheres towards the C and Si site. This effect, observed for
both the LDA and WDA approaches, is easy to understand
since the ‘dressed’ positron is more neutral to ions. The non-
locality of the e–p interaction, taken into account within the
WDA, enhances the above redistribution of the positron charge
in the Wigner–Seitz cell as compared to the LDA approach.
The explanation is that the positron is mainly screened by the
valence electrons, which are found with the highest probability
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at the C and Si site (as shown in table1). Within the WDA,
the positron follows its screening cloud towards the C and
Si atoms.

2.3. Electron–positron momentum density and positron
lifetime

The experimental positron lifetime, τ , is a unique characteristic
of the material. This quantity is calculated as inverse of the
total annihilation rate, λ = 1/τ , which is related to ρ(p)
directly, according to the formula

λ = πr 2
0 c�/(2π)3

∫
ρ(p) dp

= πr 2
0 c

∑

t

∫

�

nt
el(r)|ψ+(r)

√
γ (t, r)|2 dr, (5)

where r0 and c denote the classical electron radius and velocity
of light, respectively. Index t in (5) stands for the type of
electrons, core and valence. For valence electron density the
shell separation [15, 16] has been implemented and type t
is associated with the angular momentum, l. It is apparent
from (5) that all the effects observed in the e–p momentum
density are expected to reproduce in the relevant core and
valence components of the total annihilation rate.

In this subsection we study the influence of the positron
wavefunction and e–p correlations on the calculated e–p
momentum densities and positron lifetime. The contributions
to ρ(p), coming from valence and core electrons, are discussed
separately. The e–p interaction is taken into account in the
positron distribution through the e–p correlation potential,
which is in turn associated with the e–p correlation function,
γ , according to the Feynman theorem.

Both within the LDA and WDA, the energy dependent
correlation functions have been incorporated in the calculation
of partial and total annihilation rates according to (1) and (5)
(the details of the approach are given in [9] and [10]). In the
calculation of ρval(p = k + G), the energy factor (Ekj −
E01)/(μ− + Egap − E01) was employed in γ (k j, r) for the
valence electron in the Bloch state k j . In formula (5) for
the total annihilation rate, the valence electron density was
decomposed with respect to the angular momentum l and the
corresponding centre-of-mass linearization energies [15, 16]
were used instead of Ekj in the respective energy factor. For
the core electrons, the relevant energy factor was set equal to
zero in calculations of both the partial and total annihilation
rates according to formulae (1) and (5). It should be pointed out
that the semiconductor character of SiC is taken into account
in the e–p correlation functions through the non-zero value
of the energy gap, Egap, in the energy factor defined above.
In the calculation of the e–p momentum density and positron
lifetime, a common approximation has been applied to the
positron wavefunction and the e–p correlation functions, used
in (1) and (5).

Finally, it should be mentioned here that the valence
electrons give the main contribution to the e–p momentum
density in the low momentum region, while the core
electrons density dominates in the high momentum component
(HMC) of ρ(p). This effect is well observed in the

experimental spectra, which correspond to the two- and one-
dimensional projections of ρ(p) and have been measured for
SiC using the ACAR and two-detector coincidence Doppler
techniques [4, 5], respectively.

2.3.1. Effect of the positron wavefunction. Let us concentrate
on the influence of the positron wavefunction on the calculated
e–p momentum density. Here a comparison of the EMD, which
represents the uniform positron distribution (3), with the IPM
e–p momentum density (2) provides a direct and unperturbed
information on the overlap of the electron and positron
wavefunctions. More specifically, the discrepancies between
the EMD and IPM spectrum reflect just the sensitivity of the
momentum densities in the material under study to the positron
redistribution in the unit cell from the uniform distribution. On
the other hand, past works have already established that the
e–p correlation effects cannot be neglected in the calculation
of the momentum density distribution for SiC [4]. For this
reason we analyse the effect of the positron wavefunction on
the calculated e–p momentum densities beyond the IPM as
well. In the case of valence electrons in SiC, application of
the LDA seems to be quite reliable, since these electrons show
mainly s and p character with a small fraction of itinerant d
electrons (cf figure 1). Consequently, in this subsection we
study the valence contribution to the e–p momentum density
calculated within the LDA to the e–p correlation functions
in (1), γ LDA(k j, r) [9, 10, 13], incorporating various positron
wavefunctions. For core electrons non-local e–p interaction
effects start to play more important role, since the electron
density is strongly varying close to the nuclei (cf figure 2) and
therefore the non-local WDA seems to be more appropriate in
this case than the LDA. For this reason we employ the WDA
spectra, calculated according to (1) with γWDA(0, r) [10], in
order to analyse the effect of positron wavefunction on the core
electrons’ contribution to the e–p momentum density.

The core part of the WDA e–p momentum density
relative to EMD, ρWDA

core (p)/ρ
EMD
core (p), calculated within various

approximations to the positron wavefunction, is shown in
the top panel of figure 5. Its IPM and EMD counterparts,
ρIPM

core (p)/ρ
EMD
core (p) and ρEMD

core (p), are also presented. The
relevant valence electrons contributions to the EMD, LDA and
IPM e–p momentum density, ρEMD

val (p), ρLDA
val (p) and ρIPM

val (p),
are drawn in figure 6 for momenta p along [100] and [110]
directions.

We shall start with the discussion of core electrons’
contribution to ρ (p). The first thing to note when comparing
the IPM density, ρIPM

core (p), with its EMD counterpart, ρEMD
core (p),

is that the core part of the resulting momentum density is
significantly affected by the distortion of the positron density
from the uniform distribution. The same effect is observed
after including the e–p correlations to the formalism. The
values of both the IPM and WDA e–p momentum densities are
strongly reduced with respect to the EMD (at least five times
in the low momentum region and over two orders of magnitude
in the high momentum components).

The above features of the e–p momentum density are easy
to explain. As can be seen in table 1 and figures 2 and 4,
the major part of the positron density is accommodated in
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ρEMD

core (p) and ρIPM
core (p)/ρEMD

core (p), are shown in both panels by the
dash-dotted and bold solid lines, respectively. Top panel: the relative
WDA spectra, ρWDA

core (p)/ρEMD
core (p), obtained from (1) with

γWDA(0, r) for ψ IPM
+ , ψLDA

+ and ψWDA
+ (solid, dashed and dotted

lines, respectively). Superscripts in ψ+ refer to the approximation
used for Vcorr in (4b). EMD corresponds to the uniform positron
distribution. Bottom panel: the relative spectra calculated within
various approaches. The IPM, LDA and WDA (solid, dashed and
dotted lines) denote the approximation applied to both the e–p
correlation function, γ (0, r), and the positron wavefunction,
used in (1).

the interstitial region (empty spheres), while core electrons
are localized just close to the centre of the Si and C
spheres. In consequence, the overlap of the positron and
electron wavefunctions in (1) and (2) is diminished appreciably
as compared to the uniform positron distribution applied
in (3). The behaviour of the IPM, LDA and WDA positron
wavefunctions inside the spheres centred at the C and Si atoms
has been analysed in details in section 2.2 and illustrated in
the two upper panels of figure 4. The properties of |ψ+(r)|2
are well reproduced in the core part of the relevant WDA
momentum densities, which are plotted in the top panel of
figure 5. Once again, the conclusions, following from a
comparison of the curves drawn in figure 5, are in agreement
with the expectations. Taking into account the e–p interaction
in the positron model (through the e–p correlation potential)
increases the overlap of positron and core electron wave
functions, as the positron surrounded by its screening cloud
penetrates the ionic core region with higher probability than
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Figure 6. Valence electrons contribution to the electron–positron
momentum density in SiC, ρLDA

val (p), calculated within the LDA for
ψ IPM

+ , ψLDA
+ and ψWDA

+ (solid, dashed and dotted lines, respectively)
used in (1), for momenta along [100] and [1101] directions.
Superscripts in ψ+ refer to the approximation used for Vcorr in (4b).
The EMD (3), which is due to the uniform positron distribution,
ρEMD

val (p), and the IPM e–p momentum density (2), ρIPM
val (p), are

shown by the dash-dotted and bold solid lines, respectively.

the ‘bare’ (IPM) particle. Here the non-locality of the e–p
correlation potential enhances the above effect even further,
as pointed out in the section 2.2. It is also apparent that the
influence of the positron wavefunction on the resulting e–p
momentum density is more pronounced in the low momentum
region than in the HMCs.

As can be seen in figure 5, in the high momentum region
(for momenta p > 20 mrad) the core part of EMD is not
negligible. The high momentum component occurs in the
calculated WDA e–p momentum density as well, although
the positron redistribution in the Wigner–Seitz cell reduces
the HMCs of ρWDA

core (p) considerably as compared to EMD.
Finally, it is worth to mention that the appearance of long
tails in the e–p momentum density has been confirmed by the
experiment, through the noticeable HMC, observed in the slope
of coincidence Doppler broadening spectra measured for 3C
SiC [4].

Let us now look in details at the valence part of the
EMD, LDA and IPM e–p momentum densities, shown in
figure 6 for the momenta along [100] and [110] directions.
Comparing the curves plotted in figures 5 and 6, one can see
that the influence of the positron wavefunction on the resulting
momentum densities is qualitatively very similar for valence
and core electrons. Once again, the positron localization in the
interstitial region diminishes the values of the valence electrons
contribution to the e–p momentum density noticeably, for the
momenta both inside and outside the first Brillouin zone (BZ).
This effect is well observed when comparing the IPM spectrum
to its EMD counterpart. The reasons are similar as in the
case of core electrons. However, in the first and second
BZs the enhancement of the valence electrons density on the
positron site, represented by the correlation functions γ (k j, r)
in (1), suppresses the influence of the positron redistribution
in the unit cell on the resulting e–p momentum density.
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In consequence, for valence electrons the values of the LDA
e–p momentum density are considerably greater than of its
EMD counterpart, as can be seen in figure 6. Moreover, the
valence part of the LDA (and IPM) e–p momentum density is
quantitatively much less sensitive to the positron localization
in the interstitial region and distribution in the unit cell than
it is observed for core electrons, both in the low and high
momentum region. In particular, in the high momentum
region the effect of the positron wavefunction on the LDA e–p
momentum density is not as significant for valence electrons
as for core electrons. Neither in the low momentum region
the influence of positron wavefunction is as pronounced in
ρLDA

val (p) as it occurs for core electrons. The above feature
of ρLDA

val (p) may be attributed to the fact that, in contrast to
localized core electrons, the sp-type valence electrons in SiC
are found in the empty spheres as well as close to the boundary
of spheres centred at Si and C site, i.e. in the region in which the
positron distribution has the highest weight. In consequence,
the overlap of the positron and valence electron densities
in the empty spheres does not vanish. Including the e–p
correlation potential in the positron Schrödinger equation (4b)
increases the values of ρLDA

val (p) in the whole momentum space,
especially for the momenta inside the first BZ. The non-locality
of Vcorr increases the e–p momentum density even further, as
illustrated in figure 6. Once again, the choice of the positron
model in (1) considerably less affects the resulting LDA e–p
momentum density for valence than for core electrons.

2.3.2. Electron–positron correlation effect. Due to the strong
Coulomb attraction between the positron and surrounding
electrons, the electron density at the positron site, r, is strongly
enhanced from its initial value. This effect is described by the
correlation functions, γ (t, r), which in principle depend both
on the initial electron state t and positron position r. In turn,
the positron interaction with the electron screening cloud gives
rise to the e–p correlation potential, which affects the positron
distribution. Both these effects should be included into the
calculations of the positron annihilation characteristics within
the common approach.

In this subsection the effect of the e–p interaction on the
resulting momentum densities and total annihilation rates is
discussed both within the LDA and WDA. In the bottom panel
of figure 5 and in figure 7 we compare the EMD with the e–
p momentum densities calculated within the IPM, LDA and
WDA. The approach to the e–p interaction in (1) has been
applied in the same way to both the e–p correlation functions
and the positron wavefunction (through the e–p correlation
potential).

It can be seen that the e–p interaction affects the e–p
momentum densities considerably, both for core and valence
electrons. Taking into account the e–p correlation functions
leads to significant increase of the values of the resulting LDA
and WDA spectra in the low momentum region, as compared
to their IPM counterpart. For higher momenta, the negative
slope of the core and valence momentum densities is observed.
This effect is enhanced by inclusion of the e–p correlation
functions. Outside the first BZ, the LDA and WDA curves are
more quickly decreasing functions of momentum than the IPM
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Figure 7. Electron–positron momentum densities in SiC calculated
for valence electrons for momenta along [100] and [1101] directions.
IPM, LDA and WDA (solid, dashed and dotted lines, respectively)
refer to the approximation to both the e–p correlation function and
positron wavefunctions incorporated in (1). The EMD (3) is shown
by the dash-dotted line.

density. Here the position dependence of the e–p correlation
functions, γ (0, r) and γ (k j, r), plays the most important role,
due to the strong variation of the relevant electron density,
nel(r).

For core electrons the influence of the positron
redistribution in the unit cell dominates essentially over the
effect of the enhancement of the electron density at the positron
(described by the correlation functions γ (0, r)). The values of
the LDA and WDA momentum densities do not exceed 25%
of ρEMD

core (p), as illustrated in the bottom panel of figure 5.
In the low momentum region, the shape of the resulting
core density is hardly sensitive to the non-locality of the
e–p interaction. This is because the effect of non-locality
in the positron wavefunction, which increases the values of
ρcore(p) with respect to LDA, is partially suppressed by the
non-locality of correlation functions, γ (0, r), which in turn
diminishes the values of ρcore(p). The latter property of WDA
correlation functions may be attributed to shifting the weight
of the electron screening cloud towards the region of high
electron density, as mentioned in the preceding paragraphs.
It can be also seen that in the high momentum region
both the correlation functions and positron wavefunction,
determined within the non-local WDA, enhance the HMC
of core momentum density, while the HMC of the LDA
spectrum is much more IPM-like. It should be remembered
that the tails in the e–p momentum density correspond to the
electron wavefunctions ‘as seen’ by a positron close to the
nuclei. It is the region of high electron density in which the
electron screening cloud, following from the non-local WDA
approach, is strongly localized on the positron and the resulting
enhancement of electron density on the positron site combined
with a positron wavefunction, γWDA(0, r)|ψWDA+ (r)|2, is much
greater than its LDA counterpart, γ LDA(0, r)|ψLDA+ (r)|2.

Let us move back to valence electrons. As illustrated
in figure 7 and mentioned in subsection 2.3.1, the effect of
enhancement of the electron density on the positron position is

7



J. Phys.: Condens. Matter 20 (2008) 335226 A Rubaszek

much stronger than the influence of the positron wavefunction
on the calculated e–p momentum density, ρval(p), in both
the low and high momentum regions. For the momenta
inside the first BZ, values of the LDA and WDA momentum
densities are noticeably greater than of their EMD counterpart.
This is because the overlap of the positron and valence
electrons wavefunctions is highest in the interstitial region,
where the electron density is relatively low. The relevant
values of correlation functions increase as compared to the
core region, characterized by high electron density (the density
dependence of correlation functions in an electron gas has been
parameterized e.g. in [11]). Similarly as in the case of core
electrons, the non-locality of the e–p interaction diminishes
the values of ρWDA

val (p) in the first BZ and increases them
in the high momentum region, as compared to the LDA.
However, this effect is quantitatively different for core and
valence electrons.

For the momenta inside the first BZ, the shallow dips
and valley can be seen close to the 
 point, both in the
EMD and e–p momentum densities. Moreover, the LDA and
WDA spectra show strong anisotropy. Both these effects are
well observed in the experimental two-dimensional ACAR
spectra [4]. Let us point out, that the dips in the EMD can
be interpreted explicitly in terms of tetrahedral bonds in 3C
SiC. Therefore, we can expect that the positron redistribution
in the Wigner–Seitz cell should pronounce the behaviour
of the spectra even further. However, incorporation of
the positron wavefunction in (2) improves the agreement of
theory with the experiment very slightly. As can be seen in
figure 7, these are just the electron–positron correlation effects
that provide considerable improvement of the agreement
between the theory and experimental two-dimensional ACAR
spectra [4]. Incorporating the energy dependent e–p correlation
functions [9, 10] in (1) increases the anisotropy of ρval(p)

in the first and second BZs. The humps and valley, seen in
the spectra plotted in figure 7, are essentially enhanced in the
LDA and WDA curves, especially for the momenta along the
[110] direction. For the momenta along [100] direction the
dip and bulge are shallower. This is just the result of energy
dependence of the correlation functions, γ (k j, r). Due to the
symmetry rules [21], for the momenta along [100] direction,
only the first and second energy bands (shown in figure 1)
contribute to the EMD and ρval(p), while for momenta along
[110] direction there are first and third bands. Close to the BZ
boundary, for momenta between K and X ′ points, the third
band, which gives the main contribution to ρval(p = k + G),
is strongly increasing function of energy. In consequence, the
relevant correlation function, γ (k3, r), follows the momentum
dependence of Ek3. For the same reasons, for momenta
between X ′ and K ′ points, the WDA and LDA curves show
essentially more negative slope than their IPM and EMD
counterparts. In contrast to the core electrons, the shape of the
valence momentum density in the low momentum region and
close to the first BZ boundary is visibly changed by the non-
locality of the e–p interaction. Comparing the plots in figures 6
and 7 one can say, that the influence of non-locality in the
correlation functions, γ (k j, r), on the resulting momentum
density suppresses essentially the non-local effects, due to the

positron wavefunction. For the momenta inside the first BZ
and close to the BZ boundary, the WDA density has lower
values and is a fairly less increasing function of momentum
than its LDA counterpart. Concerning the slope of ρWDA

val (p)

close to the BZ boundary as compared to ρLDA
val (p), this is

the position dependence of the correlation functions, which
leads to weaker momentum dependence of the WDA curve.
The valence electrons density is polarized along the tetrahedral
bonds and the weight of the screening charge distribution,
obtained within the WDA, is localized there. This is also the
reason why the effect of non-locality is more pronounced for
the momenta along [110] direction and is weaker for the [100]
direction.

In order to facilitate the verification of the present
theory by experiment, in figure 8 we compare calculated and
measured Doppler broadening spectra. The one-dimensional
projections of the (spherically averaged) e–p momentum
densities,

N(pz) = C
∫
ρ(|p|) dpx dpy = C2π

∫ ∞

|pz|
pρ(|p|) dp,

have been determined within the IPM, LDA and WDA.
Constant C normalizes the positron annihilation probability
density to the unit area. The theoretical spectra have been
convoluted with the Gaussian, representing the experimental
resolution function of [4]. Results are shown in the right
panel of figure 8. The slope of the experimental Doppler
broadening spectrum for 3C SiC has been retrieved from
figure 1 of reference [4] by scan. In the left panel of figure 8
the experimental curve is presented together with the densities
calculated in the reference [4] within the LDA. The core
electrons contribution to the total (valence + core) momentum
density is also quoted. As the total density has been normalized
to the unit area, in consequence the area of the relevant core
component is equal to the ratio of the core to total annihilation
rates, λcore/λ (cf formula (5)).

As can be seen in figure 8, in the high momentum region
(pz > 20 mrad) the main contribution to the total probability
density comes from the core electrons, while the valence
component dominates in N(pz) in the low momentum region.
For both the valence and core electrons, the WDA results are
intermediate between their LDA and IPM counterparts. For
low momenta (up to 15 mrad), the WDA curve runs only a
bit lower than the LDA plot. In this region the differences in
the shape of the IPM, LDA and WDA probability densities,
drawn in figure 8(b), are hardly seen. This indicates for
very slight influence of the e–p correlations on the shape
of the isotropic (spherically averaged) part of the valence
electrons contribution to N(pz). A small bulge can be seen
in the all three plots drawn in figure 8(b) as well as in the
experimental spectrum shown in figure 8(a). This bulge,
observed for momenta between 15 and 20 mrad, can be
attributed to the oscillations in the HMCs of ρval(p). It can
be seen in the valence EMD spectrum, presented in figure 6,
that the Umklapp components of the electron wavefunctions,
ψk1(r), are not negligible for momenta k close to the Γ point
(about 15% contribution). Although the positron redistribution
strongly reduces the Umklapp components of the EMD in the
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Figure 8. Theoretical one-dimensional projections of the total (valence + core) e–p momentum densities compared with experimental
coincidence Doppler broadening spectra for 3C SiC. Spectra are normalized to the unit area. Theoretical densities are convoluted with the
resolution function of the apparatus [4]. The contributions of the core electrons to the e–p momentum densities are also shown. Left panel:
plots retrieved from figure 1 of reference [4]. Open circles refer to the experimental data. Solid and dashed lines represent the total and core
probability density distributions, respectively, calculated in [4] within the LDA. Right panel: results of the present work obtained within the
IPM, LDA and WDA approximations to the e–p correlations (solid, dashed and dotted lines). Bold and thin lines denote the total and core
densities, respectively.

amplitudes of ρval(p = k + G), nevertheless the HMC of
ρval(p = k + G) does not vanish close to the Γ′′ point. The
situation changes for core electrons. The difference between
the IPM, LDA and WDA densities is more pronounced in
the core component of N(pz) than for the valence electrons.
Moreover, the non-locality of the e–p correlation functions
starts to play important role, as the electron charge density
is strongly varying function close to the nuclei. For core
electrons the WDA curve runs well above its LDA counterpart
and in the high momentum region the WDA spectrum shows
considerably larger tails.

The encouraging point is that the slopes of both the
LDA and WDA probability densities, N(pz), agree with the
experimental data reasonably well, with the accuracy of the
thickness of circles, which mark the experimental data in
figure 8(a). For low momenta (up to 15 mrad), both the
LDA and WDA curves stick to the upper boundary of the
experimental points. In the high momentum region (for
pz > 20 mrad), the experimental curve runs between the
LDA and WDA results. The LDA and WDA spectra adhere,
respectively, to the lower and upper boundary of circles
representing the experimental data. It is worth to mention here
that the slopes of the LDA spectrum, calculated in the present
work and in reference [4], are quite similar, although present
formalism bases on the state dependent correlation functions,
in contrast to [4]. It should be also pointed out that the IPM
spectrum differs from the LDA, WDA and experimental results
appreciably, especially in the high momentum region.

Table 2. Positron lifetime (in ps) calculated within various
approximations to the positron wavefunction and e–p correlation
functions. Bold numbers refer to the common approach to both ψ+
and γ . The reported experimental value amounts to 140 ps for
perfect 6H SiC [2, 5, 6] and 142 ps for perfect 3C SiC [4].

γ LDA γWDA

ψ IPM
+ 141 157

ψLDA
+ 138 150

ψWDA
+ 132 144

Finally, let us compare the calculated and experimental
values of the positron lifetime. Present results are listed in
table 2. The experimental value amounts to 140 ps, measured
for perfect 6H SiC [2, 5, 6] and 142 ps for perfect 3C SiC [4].
The theoretical values calculated in the present work (marked
in bold in table 2) are equal to 138 and 144 ps for the LDA and
WDA, respectively. Therefore, it is difficult to judge whether
the LDA or WDA approach provides the better agreement with
the experiment. Without a doubt, the IPM result of 480 ps
is far unsatisfactory. Concerning the sensitivity of positron
lifetime to the non-locality of the e–p correlations, the two
effects compete with one another. As can be seen in table 2,
the values of the positron lifetime, τ are diminished by the
non-locality in the positron wavefunction (in the correlation
potential Vcorr) and simultaneously increased by non-local
effects in the correlation functions γ .
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3. Conclusions

The aim of the present work is to study the influence
of the positron distribution on the resulting annihilation
characteristics. This effect has not been considered for SiC
in any of references [2–8]. The next point is the sensitivity
of the e–p momentum density to the non-local e–p correlation
effects. It should be pointed out that although the authors of
references [6, 7] thoroughly discuss the differences between
the results obtained within the LDA and non-local GGA for the
positron affinity and lifetime, nevertheless the e–p momentum
densities have not been calculated in [6, 7].

In conclusion of present results, one could say that the
momentum densities in SiC are very sensitive to the shape
of the positron wavefunction in the Wigner–Seitz cell. In
particular, the core part of ρ(p) is significantly reduced with
respect to its EMD counterpart. Taking into account the
interaction of the positron with its screening cloud leads to
a considerable redistribution of the positron wavefunction in
the Wigner–Seitz cell. The weight of the positron density
is shifted from the interstitial region towards the atomic
cores, as the e–p correlation potential partially neutralizes the
repulsive potential from the nuclei. This effect is enhanced
within the non-local WDA approach. The influence of the
shape of the positron wavefunction on the resulting e–p
momentum densities for SiC is appreciable and it is due
to the changes in the overlap of the positron and particular
electron wavefunctions. This effect is pronounced in the low
momentum region as well as in the HMCs of ρcore(p).

Incorporating the electron–positron enhancement effects,
through the correlation functions γ (t, r), leads to significant
improvement of the agreement between the resulting annihi-
lation characteristics and experiment. The e–p interaction in-
creases anisotropy of the valence contribution to the e–p mo-
mentum density, ρval(p), as compared to the IPM result. Non-
locality of the e–p interaction changes the values of ρ(p) and
N(pz) in the low momentum region rather slightly, for both
valence and core electrons. In contrast to the low momentum
region, the HMC of the core spectrum is very sensitive to this
non-locality.

All the above properties of the e–p momentum densities
are exactly reproduced, both quantitatively and qualitatively,
in the core and valence components of the total annihilation
rate, λ, and hence in the positron lifetime, τ = 1/λ.
The incorporation of the e–p interaction leads to the
essential improvement of the agreement between the theory
and experiment. Concerning the non-locality of the e–p
correlations, the experimental positron lifetime [2, 4, 5] and
Doppler broadening spectra [4] are intermediate between the
LDA and WDA results.
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